Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Microservices are a dominant cloud computing architecture because they enable applications to be built as collections of loosely coupled services. To provide greater observability and control into the resultant distributed system, microservices often use an overlay proxy network called a service mesh. A key advantage of service meshes is their ability to implement zero trust networking by encrypting microservice traffic with mutually authenticated TLS. However, the service mesh control plane—particularly its local certificate authority—becomes a critical point of trust. If compromised, an attacker can issue unauthorized certificates and redirect traffic to impersonating services. In this paper, we introduce our initial work in Mazu, a system designed to eliminate trust in the service mesh control plane by replacing its certificate authority with an unprivileged principal. Mazu leverages recent advances in registration-based encryption and integrates seamlessly with Istio, a widely used service mesh. Our preliminary evaluation, using Fortio macro-benchmarks and Prometheus-assisted micro-benchmarks, shows that Mazu significantly reduces the service mesh’s attack surface while adding just 0.17 ms to request latency compared to mTLS-enabled Istio.more » « lessFree, publicly-accessible full text available March 30, 2026
An official website of the United States government

Full Text Available